If it's not what You are looking for type in the equation solver your own equation and let us solve it.
79x^2-65x-884=0
a = 79; b = -65; c = -884;
Δ = b2-4ac
Δ = -652-4·79·(-884)
Δ = 283569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-65)-\sqrt{283569}}{2*79}=\frac{65-\sqrt{283569}}{158} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-65)+\sqrt{283569}}{2*79}=\frac{65+\sqrt{283569}}{158} $
| -8b+2(6b-3)=6b+8(b-2) | | 12x+9=7x+37 | | 11x-9+2x=30 | | x-118+x-118=298 | | 7=a/9-5 | | 8(8-3p)=-23+5p | | 6x-5=7-9xx= | | 10x+3=3x+19 | | 4(3n+3=60 | | -6-4(6a-6)=114 | | -13+7m=8m+7+4m | | -14+4k=k-8 | | 6x+2=2x+39 | | 303=−14r−19 | | 10=6j | | 9x-9-10x+10=0 | | 6+6n=-114 | | 8a-2(a+3)=4a+3(a+4)-2 | | 13b=66 | | –6+9c=8c−1 | | 3(y−1)+7=11 | | 33−4a=73 | | 10x-7x=100 | | 10-7x=100 | | 23+4x=31 | | 14=-8+w | | 10=6(x+2) | | 20x+-8-3x-5=-30 | | -12(3x-1(+14=22-2(2x+6) | | 4/5(2/3x-1/3)=2/5x-4/1 | | 2(8+n)=3(2n)-7 | | 728=p |